
was: Logistic Cost Curve by the Levenberg-Marquardt Method by J.M. Redwood

Procedure mnlfit
Problem
 A method was needed for estimating the cash flows of engineering development
projects undertaken by a certain company. One such project took 13 months to
complete and the cumulative cost returns were collected throughout the life of
the project. The accounts were closed 2 months after completion of the
project, when the last bills were brought to account.

 The cumulative costs were collected at the end of each month up to the final
fixed price of £1,000,000. The data therefore comprises 16 pairs of (end) of
month numbers and the cumulative costs in £k.

 The cumulative logistic distribution function often fits data from growth
situations that are limited by a finite resource. In this case, the costs are
limited by the fixed price for the job. They grow slowly at first as just a
few, then more and more people on the development team become involved. They
then increase more rapidly as parts are bought in and manufacturing, assembly
and test proceed, and then taper off as the manufacturing and development teams
reduce with final evaluation and delivery to the customer, followed by
settlement of the last bills from suppliers.

Data
 The data recorded was
> cost := [[1,2],[2,11],[3,36],[4,87],[5,138],[6,234],[7,352],[8,489],
[9,643],[10,750],[11,854],[12,924],[13,948],[14,975],[15,995],[16,1000]]:
n := nops(cost);

 := n 16
 The shape of the plot is typical of the cumulative expenditure for a fixed
price project, and the sigmoidal form suggests that the logistic equation
should fit the data. (Note the familiar slow start because engineers and
draughtsmen were still involved with a different project!)

 The (cumulative) logistic distribution function is given by = ()f t
a1

 + 1 e
() − a

2
a
3

t

where , ,a1 a2 a3 are constants and t is the independent variable.

Fitting the Logistic Equation to the Data
 Starting values for = p [], ,a1 a2 a3 are chosen from previous experience, and all
weights are set to unity.
> p := vector(3,[1000,1,1]); w := vector(n,1):

 := p [], ,1000 1 1
Define logistic function:
> f := a[1]/(1+exp(a[2]-a[3]*t[1]));

 := f
a1

 + 1 e
() − a

2
a
3

t
1

Run fitting procedure to get parameter estimation and statistics:

> costv := linalg[col](cost,2):
month := matrix(n,1,linalg[col](cost,1)):
f1 := mnlfit(f,t,month,costv,w,a,p,10^(-20),B,6);









No of Iterations Std Deviation of Residuals
16 8.57642

Analysis of Covariance

















Source ()Σ Squares DF Mean Square

Regression 2393263 2 0.119663 107

Residuals 956 13 73.5550
Total 2394219 15

Tests of Covariance















R2 F Prob of F by chance
 for Normal data

1.00 16300. 0.811 10-22

Final values of parameters

















Parameter Value Standard Error
1. 1006.72 5.30992
2. 4.78432 0.0799611
3. 0.592026 0.0107814

Matrix of Covariances















0.383322 -0.00280745 -0.000486808
-0.00280745 0.0000869251 0.0000113418

-0.000486808 0.0000113418 0.158030 10-5

 Matrix of Correlation Coefficients















1.00000 -0.486359 -0.625469
-0.486359 1.00000 0.967696
-0.625469 0.967696 1.00000

 Table of residuals













































x obs1 y obs y calc difference wt*difference / sd of residuals

1. 2. 14.9866 -12.9866 -1.51422
2. 11. 26.7687 -15.7687 -1.83861
3. 36. 47.3711 -11.3711 -1.32586
4. 87. 82.4950 4.5050 0.525277
5. 138. 139.865 -1.865 -0.217457
6. 234. 227.320 6.680 0.778880
7. 352. 347.535 4.465 0.520613
8. 489. 491.253 -2.253 -0.262697
9. 643. 636.974 6.026 0.702624
10. 750. 762.020 -12.020 -1.40152
11. 854. 854.858 -0.858 -0.100042
12. 924. 916.638 7.362 0.858400
13. 948. 954.811 -6.811 -0.794154
14. 975. 977.327 -2.327 -0.271325
15. 995. 990.245 4.755 0.554427
16. 1000. 997.539 2.461 0.286950

 := f1
1006.72

 + 1 e
() − 4.78432 0.592026 t

1

The last expressions gives the desired logistic function that fits the data.
Plot it against the data from which it was obtained.
> F1:=unapply(subs(t[1]=t,f1),t):

aa := pointplot(cost,view=[0..17,0..1000],labels=[`Months`,`Cost
£k`],title=`An Engineering Development Project`): bb := plot(F1(x),x=0..n):
display(aa,bb);

By eye, the fit appears very good and this is supported by the relatively small
Std Deviation of Residuals statistic.
However, one should plot the residuals to check that there is no clear trend:
Systematic error for small time, even if R^2 = 1.0 ...
> pts := zip((x,y)->[x,y],[seq(j,j=1..n)],[seq(cost[i,2]-F1(i),i=1..n)]):
pointplot(pts,labels=["Month","Actual - Est Cost £k"]);

